938 resultados para autoimmune disease


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The causes of autoimmune diseases have yet to be fully elucidated. Autoantibodies, autoreactive T cell responses, the presence of a predisposing major histocompatibility complex (MHC) haplotype and responsiveness to corticosteroids are features, and some are possibly contributory causes of autoimmune disease. The most challenging question is how autoimmune diseases are triggered. Molecular mimicry of host cell determinants by epitopes of infectious agents with ensuing cross-reactivity is one of the most popular yet still controversial theories for the initiation of autoimmune diseases [1]. Throughout the 1990s, hundreds of research articles focusing to various extents on epitope mimicry, as it is more accurately described in an immunological context, were published annually. Many of these articles presented data that were consistent with the hypothesis of mimicry but that did not actually prove the theory. Other equally convincing reports indicated that epitope mimicry was not the cause of the autoimmune disease despite sequence similarity between molecules of infectious agents and the host. Some 20 years ago, Rothman [2] proposed a model for disease causation and I have used this as a framework to examine the role of epitope mimicry in the development of autoimmune disease. The thesis of Rothman’s model is that an effect, in this instance autoimmune disease, arises as a result of a cause. In most cases, multiple-component causes contribute synergistically to yield the effect, and each of these components alone is insufficient as a cause. Logically, some component causes, such as the presence of a particular autoimmune response, are also necessary causes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mimicry of host antigens by infectious agents may induce cross-reactive autoimmune responses to epitopes within host proteins which, in susceptible individuals, may tip the balance of immunological response versus tolerance toward response and subsequently lead to autoimmune disease. Epitope mimicry may indeed be involved in the pathogenesis of several diseases such as post-viral myocarditis or Chagas disease, but for many other diseases in which it has been implicated, such as insulin-dependent diabetes mellitis or rheumatoid arthritis, convincing evidence is still lacking. Even if an epitope mimic can support a cross-reactive T or B cell response in vitro, its ability to induce an autoimmune disease in vivo will depend upon the appropriate presentation of the mimicked host antigen in the target tissue and, in the case of T cell mimics, the ability of the mimicking epitope to induce a proliferative rather than anergizing response upon engagement of the MHC-peptide complex with the T cell receptor. B cell presentation of mimicking foreign antigen to T cells is a possible mechanism for instigating an autoimmune response to self antigens that in turn can lead to autoimmune disease under particular conditions of antigen presentation, secondary signalling and effector cell repertoire. In this review evidence in support of epitope mimicry is examined in the light of the necessary immunological considerations of the theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Several observational studies have investigated autoimmune disease and subsequent risk of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma. Findings have been largely inconsistent and hindered by the rarity and heterogeneity of the autoimmune disorders investigated. A systematic review of the literature was undertaken to evaluate the strength of the evidence linking prior autoimmune disease and risk of MGUS/multiple myeloma.

Methods: A broad search strategy using key terms for MGUS, multiple myeloma, and 50 autoimmune diseases was used to search four electronic databases (PubMed, Medline, Embase, and Web of Science) from inception through November 2011.

Results: A total of 52 studies met the inclusion criteria, of which 32 were suitably comparable to perform a meta-analysis. “Any autoimmune disorder” was associated with an increased risk of both MGUS [n = 760 patients; pooled relative risk (RR) 1.42; 95% confidence interval (CI), 1.14–1.75] and multiple myeloma (n>2,530 patients; RR 1.13, 95% CI, 1.04–1.22). This risk was disease dependent with only pernicious anemia showing an increased risk of both MGUS (RR 1.67; 95% CI, 1.21–2.31) and multiple myeloma (RR 1.50; 95% CI, 1.25–1.80).

Conclusions: Our findings, based on the largest number of autoimmune disorders and patients with MGUS/multiple myeloma reported to date, suggest that autoimmune diseases and/or their treatment may be important in the etiology of MGUS/multiple myeloma. The strong associations observed for pernicious anemia suggest that anemia seen in plasma cell dyscrasias may be of autoimmune origin.

Impact: Underlying mechanisms of autoimmune diseases, general immune dysfunction, and/or treatment of autoimmune diseases may be important in the pathogenesis of MGUS/multiple myeloma. Cancer Epidemiol Biomarkers Prev; 23(2); 332–42. ©2014 AACR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The aim of the present study was to analyze the main clinical and histopathological features of autoimmune diseases with oral manifestations such as oral lichen planus (OLP); mucous membrane pemphigoid (MMP); pemphigus vulgaris (PV) and erythema multiforme (EM). Study design: Retrospective review of 5770 files from the Oral Pathology Laboratory of Sao Jose dos Campos Dental School, São Paulo State University (UNESP) comprising a 27- year period from 1974 to 2000.Results: The cases accounted for 64 (1.10%) of 5770 anatomopathological examinations performed over the study period. Among the autoimmune diseases diagnosed, 49 (76.56%) were OLP, 6 (9.37%) were MMP, 5 (7.82%) were em and 4 (6.25%) were PV. Descriptive statistical analysis was used.Conclusion: The initial manifestations of most autoimmune diseases occur in the oral mucosa. An earlier diagnosis and proper therapeutic protocol will delay the dissemination of the lesions, thus greatly contributing to a better prognosis and quality of life of the patient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association of RASopathies [Noonan syndrome (NS) and Noonan-related syndromes] and autoimmune disorders has been reported sporadically. However, a concomitant evaluation of autoimmune diseases and an assessment of multiple autoantibodies in a large population of patients with molecularly confirmed RASopathy have not been performed. The clinical and laboratory features were analyzed in 42 RASopathy patients, the majority of whom had NS and five individuals had Noonan-related disorders. The following autoantibodies were measured: Anti-nuclear antibodies, anti-double stranded DNA, anti-SS-A/Ro, anti-SS-B/La, anti-Sm, anti-RNP, anti-Scl-70, anti-Jo-1, anti-ribosomal P, IgG and IgM anticardiolipin (aCL), thyroid, anti-smooth muscle, anti-endomysial (AE), anti-liver cytosolic protein type 1 (LC1), anti-parietal cell (APC), anti-mitochondrial (AM) antibodies, anti-liver-kidney microsome type 1 antibodies (LKM-1), and lupus anticoagulant. Six patients (14%) fulfilled the clinical criteria for autoimmune diseases [systemic lupus erythematous, polyendocrinopathy (autoimmune thyroiditis and celiac disease), primary antiphospholipid syndrome (PAPS), autoimmune hepatitis, vitiligo, and autoimmune thyroiditis]. Autoimmune antibodies were observed in 52% of the patients. Remarkably, three (7%) of the patients had specific gastrointestinal and liver autoantibodies without clinical findings. Autoimmune diseases and autoantibodies were frequently present in patients with RASopathies. Until a final conclusion of the real incidence of autoimmunity in Rasopathy is drawn, the physicians should be alerted to the possibility of this association and the need for a fast diagnosis, proper referral to a specialist and ultimately, adequate treatment. (c) 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autoimmune diseases are a group of inflammatory conditions in which the body's immune system attacks its own cells. There are over 80 diseases classified as autoimmune disorders, affecting up to 23.5 million Americans. Obesity affects 32.3% of the US adult population, and could also be considered an inflammatory condition, as indicated by the presence of chronic low-grade inflammation. C-reactive protein (CRP) is a marker of inflammation, and is associated with both adiposity and autoimmune inflammation. This study sought to determine the cross-sectional association between obesity and autoimmune diseases in a large, nationally representative population derived from NHANES 2009–10 data, and the role CRP might play in this relationship. Overall, the results determined that individuals with autoimmune disease were 2.11 times more likely to report being overweight than individuals without autoimmune disease and that CRP had a mediating affect on the obesity-autoimmune relationship. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Fas/Fas ligand (FasL) system participates in regulation of the immune system through the apoptotic process. However, the extent to which abnormalities in this system are involved in the loss of self-tolerance and development of autoimmune disease not associated with Fas/FasL mutations remains unknown. The present study addresses this issue in Fas/FasL-intact, systemic lupus erythematosus (SLE)-prone (NZB × NZW) (NZB/W) F1 mice. While splenic B cells from 2-month-old mice before overt SLE expressed Fas poorly, in vitro stimulation with an agonistic anti-CD40 mAb up-regulated their Fas expression, thus revealing the existence of two populations: one was Fashigh and highly susceptible to anti-Fas mAb-induced apoptosis, and the other was Faslow and apoptosis-resistant. The Faslow cells were included in the CD5+ B cell subpopulation and contained most of the cells that produced IgM anti-DNA antibodies. The isotype of anti-DNA antibodies switches from IgM to IgG in NZB/W F1 mice at ages beginning at about 6 months. These IgG anti-DNA antibodies were produced almost exclusively by a subpopulation of splenic B cells that spontaneously expressed low levels of Fas in vivo and were apoptosis-resistant. The findings indicate that precursor B cells for autoantibody production and presumably autoantibody-secreting cells in these mice are relatively resistant to Fas-mediated apoptosis, a finding supporting the concept that abnormalities of Fas-mediated apoptotic process are involved in the development of autoreactive B cells in Fas/FasL-intact autoimmune disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transplantations of fully allogeneic, autoimmune-resistant T-cell-depleted marrow (TCDM) plus syngeneic, autoimmune-prone TCDM into lethally irradiated BXSB mice were carried out to investigate the ability of the mixed bone marrow transplantation (BMT) to prevent development of autoimmune disease and, at the same time, to reconstitute fully the immunity functions of heavily irradiated BXSB recipients. Male BXSB mice were engrafted with mixed TCDM from both allogeneic, autoimmune-resistant BALB/c mice and syngeneic, autoimmune-prone BXSB mice. BMT with mixed TCDM from both resistant and susceptible strains of mice (mixed BMT) prolonged the median life span and inhibited development of glomerulonephritis in BXSB mice. BMT with mixed TCDM also prevented the formation of anti-DNA antibodies that is typically observed in male mice of this strain. Moreover, mixed BMT reconstituted primary antibody production in BXSB recipients, so that no annoying immunodeficiencies that are regularly observed in fully allogeneic chimeras were present in the recipient of the mixed TCDM. These findings indicate that transplanting allogeneic, autoimmune-resistant TCDM plus syngeneic, autoimmune-prone TCDM into lethally irradiated BXSB mice prevents development of autoimmune disease in this strain of mice. In addition, this dual BMT reconstitutes the immunity functions and avoids the immunodeficiencies that occur regularly in fully allogeneic chimeras after total-body irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that the receptor binding moiety of Escherichia coli heat-labile enterotoxin (EtxB) can completely prevent autoimmune disease in a murine model of arthritis. Injection of male DBA/1 mice at the base of the tail with type II collagen in the presence of complete Freund’s adjuvant normally leads to arthritis, as evidenced by inflammatory infiltration and swelling of the joints. A separate injection of EtxB at the same time as collagen challenge prevented leukocyte infiltration, synovial hyperplasia, and degeneration of the articular cartilage and reduced clinical symptoms of disease by 82%. The principle biological property of EtxB is its ability to bind to the ubiquitous cell surface receptor GM1 ganglioside, and to other galactose-containing glycolipids and galactoproteins. The importance of receptor interaction in mediating protection from arthritis was demonstrated by the failure of a non-receptor-binding mutant of EtxB to elicit any protective effect. Analysis of T cell responses to collagen, in cultures of draining lymph node cells, revealed that protection was associated with a marked increase in interleukin 4 production concomitant with a reduction in interferon γ levels. Furthermore, in protected mice there was a significant reduction in anti-collagen antibody levels as well as an increase in the IgG1/IgG2a ratio. These observations show that protection is associated with a shift in the Th1/Th2 balance as well as a general reduction in the extent of the anti-type II collagen immune response. This suggests that EtxB-receptor-mediated modulation of lymphocyte responses provides a means of preventing autoimmune disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immunodominant, CD8+ cytotoxic T lymphocyte (CTL) response to the HLA-B8-restricted peptide, RAKFKQLL, located in the Epstein–Barr virus immediate-early antigen, BZLF1, is characterized by a diverse T cell receptor (TCR) repertoire. Here, we show that this diversity can be partitioned on the basis of crossreactive cytotoxicity patterns involving the recognition of a self peptide—RSKFRQIV—located in a serine/threonine kinase and a bacterial peptide—RRKYKQII—located in Staphylococcus aureus replication initiation protein. Thus CTL clones that recognized the viral, self, and bacterial peptides expressed a highly restricted αβ TCR phenotype. The CTL clones that recognized viral and self peptides were more oligoclonal, whereas clones that strictly recognized the viral peptide displayed a diverse TCR profile. Interestingly, the self and bacterial peptides equally were substantially less effective than the cognate viral peptide in sensitizing target cell lysis, and also resulted only in a weak reactivation of memory CTLs in limiting dilution assays, whereas the cognate peptide was highly immunogenic. The described crossreactions show that human antiviral, CD8+ CTL responses can be shaped by peptide ligands derived from autoantigens and environmental bacterial antigens, thereby providing a firm structural basis for molecular mimicry involving class I-restricted CTLs in the pathogenesis of autoimmune disease.

Relevância:

100.00% 100.00%

Publicador: